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Abstract

Modern applications often operate on data in multiple administrative domains. In this federated set-
ting, participants may not fully trust each other. These distributed applications use transactions as a
core mechanism for ensuring reliability and consistency with persistent data. However, the coordina-
tion mechanisms needed for transactions can both leak confidential information and allow unauthorized
influence.

By implementing a simple attack, we show these side channels can be exploited. However, our focus
is on preventing such attacks. We explore secure scheduling of atomic, serializable transactions in a
federated setting. While we prove that no protocol can guarantee security and liveness in all settings, we
establish conditions for sets of transactions that can safely complete under secure scheduling. Based on
these conditions, we introduce staged commit, a secure scheduling protocol for federated transactions.
This protocol avoids insecure information channels by dividing transactions into distinct stages. We
implement a compiler that statically checks code to ensure it meets our conditions, and a system that
schedules these transactions using the staged commit protocol. Experiments on this implementation
demonstrate that realistic federated transactions can be scheduled securely, atomically, and efficiently.

1 Introduction

Many modern applications are distributed, operating over data from multiple domains. Distributed proto-
cols are used by applications to coordinate across physically separate locations, especially to maintain data
consistency. However, distributed protocols can leak confidential information unless carefully designed
otherwise.

Distributed applications are often structured in terms of transactions, which are atomic groups of op-
erations. For example, when ordering a book online, one or more transactions occur to ensure that the
same book is not sold twice, and to ensure that the sale of a book and payment transfer happen atomically.
Transactions are ubiquitous in modern distributed systems. Implementations include Google’s Spanner [14],
Postgres [33], and Microsoft’s Azure Storage [11]. Common middleware such as Enterprise Java Beans [30]
and Microsoft .NET [1] also support transactions.

Many such transactions are distributed, involving multiple autonomous participants (vendors, banks,
etc.). Crucially, these participants may not be equally trusted with all data. Standards such as X/Open
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XA [2] aim specifically to facilitate transactions that span multiple systems, but none address information
leaks inherent to transaction scheduling.

Distributed transaction implementations are often based on the two-phase commit protocol (2PC) [20].
We show that 2PC can create unintentional channels through which private information may be leaked, and
trusted information may be manipulated. We expect our results apply to other protocols as well.

There is a fundamental tension between providing strong consistency guarantees in an application and
respecting the security requirements of the application’s trust domains. This work deepens the understanding
of this trade-off and demonstrates that providing both strong consistency and security guarantees, while not
always possible, is not a lost cause.

Concretely, we make the following contributions in this paper:

• We describe abort channels, a new kind of side channel through which confidential information can
be leaked in transactional systems (§2).

• We demonstrate exploitation of abort channels on a distributed system (§2.3).

• We define an abstract model of distributed systems, transactions, and information flow security (§3),
and introduce relaxed observational determinism, a noninterference-based security model for dis-
tributed systems (§3.7.2).

• We establish that within this model, it is not possible for any protocol to securely serialize all sets of
transactions, even if the transactions are individually secure (§4).

• We introduce and prove a sufficient condition for ensuring serializable transactions can be securely
scheduled (§5).

• We define the staged commit protocol, a novel secure scheduling protocol for transactions meeting
this condition (§6).

• We implement our novel protocol in the Fabric system [28], and extend the Fabric language and
compiler to statically ensure transactions will be securely scheduled (§7).

• We evaluate the expressiveness of the new static checking discipline and the runtime overhead of the
staged commit protocol (§8).

We discuss related work further in §9, and conclude in §10.

2 Abort Channels

Two transactions working with the same data can conflict if at least one of them is writing to the data. Typi-
cally, this means that one (or both) of the transactions has failed and must be aborted. In many transaction
protocols, including 2PC, a participant1 involved in both transactions can abort a failed transaction by send-
ing an abort message to all other participants in the failed transaction [20]. These abort messages can create
unintended abort channels, through which private information can be leaked, and trusted information can
be manipulated.

An abort message can convey secret information if a participant aborts a transaction otherwise likely
to be scheduled, because another participant in the same transaction might deduce something about the

1Transaction participants are often processes or network nodes.
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Figure 1: Rainforest example. Gloria and Fred each buy an Outel chip via Rainforest’s store. Gloria’s
transaction is in red, dashed arrows; Fred’s is in blue, solid arrows.

aborting participant. For example, that other participant might guess that the abort is likely caused by the
presence of another—possibly secret—conflicting transaction.

Conspirators might deliberately use abort channels to covertly transfer information within a system
otherwise believed to be secure. Although abort channels communicate at most one bit per (attempted)
transaction, they could be used as a high-bandwidth covert channel for exfiltration of sensitive information.
Current transactional systems can schedule over 100 million transactions per second, even at modest system
sizes [18]. It is difficult to know if abort channels are already being exploited in real systems, but large-scale,
multi-user transactional systems such as Spanner [14] or Azure Storage [11] are in principle vulnerable.

Abort messages also affect the integrity of transaction scheduling. An abort typically causes a trans-
action not to be scheduled. Even if the system simply retries the transaction until it is scheduled, this still
permits a participant to control the ordering of transactions, even if it has no authority to affect them. For
example, a participant might gain some advantage by ensuring that its own transactions always happen after
a competitor’s.

Transactions can also create channels that leak information based on timing or termination [6, 10]. We
treat timing and termination channels as outside the scope of this work, to be handled by mechanisms such
as timing channel mitigation [25, 5, 9]. Abort channels differ from these previously identified channels in
that information leaks via the existence of explicit messages, with no reliance on timing other than their
ordering. Timing mitigation does not control abort channels.

2.1 Rainforest Example
A simple example illustrates how transaction aborts create a channel that can leak information. Consider a
web-store application for the fictional on-line retailer Rainforest, illustrated in Fig. 1. Rainforest’s business
operates on data from suppliers, customers, and banks. Rainforest wants to ensure that it takes money from
customers only if the items ordered have been shipped from the suppliers. As a result, Rainforest implements
purchasing using serializable transactions. Customers expect that their activities do not influence each other,
and that their financial information is not leaked to suppliers. These expectations might be backed by law.

In Fig. 1, Gloria and Fred are both making purchases on Rainforest at roughly the same time. They each
purchase an Outel chip, and pay using their accounts at CountriBank. If Rainforest uses 2PC to perform both
of these transactions, it is possible for Gloria to see an abort when Outel tries to schedule her transaction
and Fred’s. The abort leaks information about Fred’s purchase at Outel to Gloria. Alternatively, if Gloria is
simultaneously using her bank account in an unrelated purchase, scheduling conflicts at the bank might leak
to Outel, which could thereby learn of Gloria’s unrelated purchase.

These concerns are about confidentiality, but transactions may also create integrity concerns. The bank
might choose to abort transactions to affect the order in which Outel sells chips. Rainforest and Outel may
not want the bank to have this power.
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Figure 2: The events of the transactions in Fig. 1. Gloria’s transaction consists of r0, r1, r2, r3, r4, and r5.
Bob’s consists of b0, b1, b2, b3, b4, and b5. Happens-before (_) relationships are arrows. The shaded
blocks around events indicate locations, and are labeled with participants from Fig. 1.

2.2 Hospital Example

As a second, running example, we use two small programs with an abort channel. Suppose Patsy is a trusted
hospital employee, running the code in Fig. 3a to collect the addresses of HIV-positive patients in order to
send treatment reminders. Patsy runs her transaction on her own computer, which she fully controls, but
it interacts with a trusted hospital database on another machine. Patsy starts a transaction for each patient
p, where transaction blocks are indicated by the keyword atomic. If p does not have HIV, the transaction
finishes immediately. Fig. 3c shows the resulting transaction in solid blue. (Events in the transaction are
represented as ovals; arrows represent dependencies between transaction events.) Otherwise, if the patient
has HIV, Patsy’s transaction reads the patient’s address and prints it (the blue transaction in Fig. 3c, including
dashed events).

Suppose Mallory is another employee at the same hospital, but is not trusted to know each patient’s
HIV status. Mallory is, however, trusted with patient addresses. Like Patsy, Mallory’s code runs on her
own computer, which she fully controls, but interacts with the trusted hospital database on another machine.
She runs the code in Fig. 3b to update each patient’s address in a separate transaction, resulting in the red
transaction in Fig. 3c. When Mallory updates the address of an HIV-positive patient, her transaction might
conflict with one of Patsy’s, and Mallory would observe an abort. Thus Mallory can learn which patients are
HIV-positive by updating each patient’s address while Patsy is checking the patients’ HIV statuses. Each
time one of Mallory’s transactions aborts, private information leaks: that patient has HIV.

One solution to this problem is to change Patsy’s transaction: instead of reading the address only if
the patient is HIV positive, Patsy reads every patient’s address. This illustrates a core goal of our work:
identifying which programs can be scheduled securely. In Fig. 4a, lines 3 and 4 of Patsy’s code have been
switched. As Fig. 4c shows, both possible transactions read the patient’s address. Since Mallory cannot
distinguish which of Patsy’s transactions has run, she cannot learn which patients have HIV.

2.3 Attack Demonstration
Using code resembling Fig. 3, we implemented the attack described in our hospital example (§ 2.2) using
the Fabric distributed system [4, 28]. We ran nodes representing Patsy and Mallory, and a storage node for
the patient records.

To improve the likelihood of Mallory conflicting with Patsy (and thereby receiving an abort), we had
Patsy loop roughly once a second, continually reading the address of a single patient after verifying their
HIV-positive status. Meanwhile, Mallory attempted to update the patient’s address with approximately the
same frequency as Patsy’s transaction.
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1 atomic {
2 h = p.hasHiv;
3 if (h) {
4 x = p.address;
5 print(x);
6 }
7 }

(a) Patsy’s code

Patsy start

Read HIV

Read address

Print address

Mallory start

Update address
?

High Security (H)

Low Security (L)

(c) Resulting transactions

1 atomic {
2 p.address+=" ";
3 }

(b) Mallory’s code
Figure 3: Insecure hospital scenario. Patsy runs a program (3a) for each patient p. If p has HIV (which
is private information), she prints out p’s address for her records. The resulting transaction takes one of
two forms. Both begin with the event Patsy start. If p is HIV negative, the transaction ends with Read
HIV. Otherwise, it includes the blue events with dashed outlines. Meanwhile, Mallory updates the p’s (less
secret) address (3b), resulting in the transaction with red, solid-bordered events. This conflicts with Patsy’s
transaction, requiring the system to order the update and the read, exactly when p has HIV (“?” in 3c).

Like many other distributed transaction systems, Fabric uses two-phase commit. Mallory’s window
of opportunity for receiving an abort exists between the two phases of Patsy’s commit, which ordinarily
involves a network round trip. However, both nodes were run on a single computer. To model a cloud-based
server, we simulated a 100 ms network delay between Patsy and the storage node.

Getting this to work was challenging, because Fabric caches its objects optimistically. When Mallory
updates the patient’s address, it would invalidate Patsy’s cached copy, causing Patsy’s next transaction to
abort and retry. Furthermore, Fabric implements an exponential back-off algorithm for retrying aborted
transactions. As a result, we had to carefully tune the transaction frequencies to prevent Mallory from
starving out Patsy.

We ran this experiment for 90 minutes. During this time, Mallory received an abort roughly once for
every 20 transactions Patsy attempted. As a result, approximately every 20 seconds, Mallory learned that a
patient had HIV. In principle, many such attacks could be run in parallel, so this should be seen as a minimal,
rather than a maximal, rate of information leakage for this setup.

As described later, our modified Fabric compiler (§7) correctly rejects Patsy’s code. We amended Patsy’s
code to reflect Fig. 4, and our implementation of the staged commit protocol (§6) was able to schedule the
transactions without leaking information. Mallory was no more or less likely to receive aborts regardless of
whether the patient had HIV.

3 System Model

We introduce a formal, abstract system model that serves as our framework for developing protocols and
proving their security properties. Despite its simplicity, the model captures the necessary features of dis-
tributed transaction systems and protocols. As part of this model, we define what it means for transactions
to be serializable and what it means for a protocol to serialize transactions both correctly and securely.
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1 atomic {
2 〈h = p.hasHiv‖
3 x = p.address〉;
4 if (h) {
5 print(x);
6 }
7 }

(a) Patsy’s code

Patsy start

Read HIV

Read address

Print address

Mallory start

Update address
?

High Security (H)

Low Security (L)

(c) Resulting transactions

1 atomic {
2 p.address+=" ";
3 }

(b) Mallory’s code
Figure 4: Secure hospital scenario. A secure version of Fig. 3, in which lines 3 and 4 of Patsy’s code (3a)
are switched, and the resulting lines 2 and 3 can be run in parallel (〈 ‖ 〉). Thus the transaction reads p’s
address regardless of whether p has HIV, and so Mallory cannot distinguish which form Patsy’s transaction
takes.

3.1 State and Events

Similarly to Lamport [26], we define a system state to include a finite set of events, representing a history
of the system up to a moment in time. An event (denoted e) is an atomic native action that takes place at a
location, which can be thought of as a physical computer on the network. Some events may represent read
operations (“the variable x had the value 3”), or write operations (“2 was written into the variable y”). In
Figures 3 and 4, for example, events are represented as ovals, and correspond to lines of code.

Also part of the system state is a causal ordering on events. Like Lamport’s causality [26], the ordering
describes when one event e1 causes another event e2. In this case, we say e1 happens before e2, written as
e1_e2. This relationship would hold if, for example, e1 is the sending of a message, and e2 its receipt. The
ordering (_) is a strict partial order: irreflexive, asymmetric, and transitive. Therefore, e1_e2 and e2_e3
together imply e1_e3.

The arrows in Figures 2 to 4 show happens-before relationships for the transactions involved.

3.2 Information Flow Lattice

We extend Lamport’s model by assigning to each event e a security label, written `(e), which defines the
confidentiality and integrity requirements of the event. Events are the most fine-grained unit of information
in our model, so there is no distinction between the confidentiality of an event’s occurrence and that of its
contents. Labels in our model are similar to high and low event sets [35, 13]. In Figures 3 and 4, two security
labels, High and Low (H and L for short), are represented by the events’ positions relative to the dashed line.

For generality, we assume that labels are drawn from a lattice [15], depicted in Fig. 5. Information is
only permitted to flow upward in the lattice. We write “`(e1) is below `(e2)” as `(e1)v`(e2), meaning it is
secure for the information in e1 to flow to e2.

For instance, in Fig. 3, information should not flow from any events labeled H to any labeled L. Intuitively,
we don’t want secret information to determine any non-secret events, because unauthorized parties might
learn something secret. However, information can flow in the reverse direction: reading the patient’s address
(labeled L) can affect Patsy’s printout (labeled H): L v H.

The join (t) of two labels represents their least upper bound: `1v(`1t`2) and `2v(`1t`2). The meet
(u) of two labels represents their greatest lower bound: (`1u`2)v`1 and (`1u`2)v`2.

Like events, each location has a label, representing a limit on events with which that location can be
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Figure 5: Security lattice: The dot represents a label in the lattice, and the dashed lines divide the lattice into
four quadrants relative to this label. If the label represents an event, then only events with labels in quadrant
B may influence this event, and this event may only influence events with labels in quadrant A. If the label
represents a location, then only events with labels in quadrant C may occur at that location.

trusted. No event should have more integrity than its location. Similarly, no event should be too secret for
its location to know. Thus, in Fig. 5, only events to the left of a location’s label (i.e., region C in the figure)
may take place at that location.

For example, consider Gloria’s payment event at CountriBank in the Rainforest example Fig. 1. This
event (r5 in Fig. 2) represents money moving from Gloria’s account to Outel’s. The label ` of r5 should
not have any more integrity than CountriBank itself, since the bank controls r5. Likewise, the bank knows
about r5, so ` cannot be more confidential than the CountriBank’s label. This would put ` to the left of the
label representing CountriBank in the lattice of Fig. 5.

Our prototype implementation of secure transactions is built using the Fabric system [28], so the lattice
used in the implementation is based on the Decentralized Label Model (DLM) [31]. However, the results of
this paper are independent of the lattice used.

3.3 Conflicts

Two events in different transactions may conflict. This is a property inherent to some pairs of events.
Intuitively, conflicting events are events that must be ordered for data to be consistent. For example, if e1
represents reading variable x, and e2 represents writing x, then they conflict, and furthermore, the value read
and the value written establish an ordering between the events. Likewise, if two events both write variable
x, they conflict, and the system must decide their ordering because it affects future reads of x.

In our hospital example (Figures 3 and 4), the events Read address and Update address conflict. Specif-
ically, the value read will change depending on whether it is read before or after the update. Thus for any
such pair of events, there is a happens-before (_) ordering between them, in one direction or the other.

We assume that conflicting events have the same label. This assumption is intuitive in the case of events
that are reads and writes to the same variable (that is, storage location). Read and write operations in separate
transactions could have occurred in either order, so the happens-before relationship between the read and
write events cannot be predicted in advance.

Our notion of conflict is meant to describe direct interaction between transactions. Hence, we also
assume any conflicting events happen at the same location.
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Figure 6: An example system state. The events r0, r1, and r2 form transaction R, and the events b0,b1,
and b2 form transaction B. Event p is not part of either transaction. It may be an input, such as a network
delay event, or part of a protocol used to schedule the transactions. In this state, r1_p _b1, which means
that r1 happens before b1, and so the transactions are ordered: R_B.

3.4 Serializability and Secure Information Flow

Traditionally a transaction is modeled as a set of reads and writes to different objects [32]. We take a more
abstract view, and model a transaction as a set of events that arise from running a piece of code. Each
transaction features a start event, representing the decision to execute the transaction’s code. Start events,
by definition, happen before all others in the transaction. Multiple possible transactions can feature the
same start event: the complete behavior of the transaction’s code is not always determined when it starts
executing, and may depend on past system events.

Fig. 4c shows two possible transactions, in blue, that can result from running the secure version of
Patsy’s code. They share the three events in solid blue, including the start event (Patsy start); one transaction
contains a fourth event, Print address. The figure also shows in red the transaction resulting from Mallory’s
code. Fig. 6 is a more abstract example, in which r0 is the start event of transaction R, and b0 is the start
event of transaction B.

In order to discuss what it means to serialize transactions, we need a notion of the order in which
transactions happen. We obtain this ordering by lifting the happens-before relation on events to a happens-
before (_) relation for transactions. We say that transaction T2 directly depends on T1, written T1 ≺ T2, if
an event in T1 happens before an event in T2:

T1 ≺ T2 ≡ T1 6= T2 ∧ ∃e1 ∈ T1, e2 ∈ T2 . e1_e2

The happens-before relation on transactions (_) is the transitive closure of this direct dependence relation
≺. Thus, in Fig. 6, the ordering R_B holds. Likewise, Fig. 7 is a system state featuring the transactions
from our hospital example (Fig. 4), in which Patsy_Mallory holds.

Def. 1 (Serializability). Transactions are serializable exactly when happens-before is a strict partial order
on transactions.

Any total order consistent with this strict partial order would then respect the happens-before ordering
(_) of events. Such a total ordering would represent a serial order of transactions.

Def. 2 (Secure Information Flow). A transaction is information-flow secure if happens-before (_) rela-
tionships between transaction events—and therefore causality—are consistent with permitted information
flow:

e1_e2 =⇒ `(e1)v`(e2)

This definition represents traditional information flow control within each transaction. Intuitively, each
transaction itself cannot cause a security breach (although this definition says nothing about the protocol
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High Security
Low Security

Patsy start

Read address

Read HIV

Print address

Mallory start

Update address

Patsy acquires lock

Patsy releases lock

Mallory acquires lock

Mallory releases lock

Figure 7: A possible system state after running transactions from Fig. 4c, assuming the patient has HIV,
and an exclusive lock is used to order the transactions. (Events prior to everything in both transactions
are not shown.) Because Patsy acquires the lock first, the transactions are ordered Patsy_Mallory. While
each transaction is information-flow secure (a property of events within a transaction), when Patsy releases
the lock after her transaction, a high security event happens before a low security one. We discuss secure
scheduling protocols in §6.

scheduling them). In our hospital example, Patsy’s transaction in Fig. 3c is not information-flow secure,
since Read HIV happens before Read address, and yet the label of Read HIV, H, does not flow to the label
of Read address, L. However, in the modified, secure version (Fig. 4c), there are no such insecure happens-
before relationships, so Patsy’s transaction is secure.

3.5 Network and Timing
Although this model abstracts over networks and messaging, we consider a message to comprise both a
send event and a receive event. We assume asynchronous messaging: no guarantees can be made about
network delay. Perhaps because this popular assumption is so daunting, many security researchers ignore
timing-based attacks. There are methods for mitigating leakage via timing channels [25, 5, 9] but in this
work we too ignore timing.

To model nondeterministic message delay, we introduce a network delay event for each message receipt
event, with the same label and location. The network delay event may occur at any time after the message
send event. It must happen before (_) the corresponding receipt event. In Fig. 6, event r1 could represent
sending a message, event p could be the corresponding network delay event, which is not part of any
transaction, and event b1 could be the message receipt event. Fig. 6 does not require p to be a network
delay event. It could be any event that is not part of either transaction. For example, it might be part of some
scheduling protocol.
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Event Scheduled: r0 r1 r2 b0 p b1 b2

Resulting State: {} r0 r0
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p
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r1
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b0

b1

p
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r1

r2

b0

b1

b2

p

Event Scheduled: b0 r0 r1 p b1 b2 r2

Resulting State: {} b0 r0 b0 r0

r1

b0 r0

r1

b0

p

r0

r1

b0

b1

p

r0

r1

b0

b1

b2

p

r0

r1

r2

b0

b1

b2

p

Figure 8: Two equivalent full executions for the system state from Fig. 6. Each begins with a start state (the
empty set for full executions), followed by a sequence of events, each of which corresponds to the resulting
system state.

3.6 Executions, Protocols, and Inputs

An execution is a start state paired with a totally ordered sequence of events that occur after the start state.
This sequence must be consistent with happens-before (_). Recall that a system state is a set of events
(§3.1). Each event in the sequence therefore corresponds to a system state containing all the events in the
start state, and all events up to and including this event in the sequence. Viewing an execution as a sequence
of system states, an event is scheduled if it is in a state, and once it is scheduled, it will be scheduled in
all later states. Two executions are equivalent if their start states are equal, and their sequences contain the
same set of events, so they finish with equal system states (same set of events, same _). A full execution
represents the entire lifetime of the system, so its start state contains no events.

For example, Fig. 8 illustrates two equivalent full executions ending in the system state from Fig. 6.
A transaction scheduling protocol determines the order in which each location schedules the events of

transactions. Given a set of possible transactions, a location, and a set of events representing a system state
at that location, a protocol decides which event is scheduled next by the location:

protocol : set 〈Transactions〉 × Location× State→ event

Protocols can schedule an event from a started (but unfinished) transaction, or other events used by
the protocol itself. In order to schedule transaction events in ways that satisfy certain constraints, like
serializability, protocols may have to schedule additional events, which are not part of any transaction.
These can include message send and receipt events. For example, in Fig. 7, the locking events are not part
of any transaction, but are scheduled by the protocol in order to ensure serializability.

Certain kinds of events are not scheduled by protocols, because they are not under the control of the
system. Events representing external inputs, including the start events of transactions, can happen at any
time: they are fundamentally nondeterministic. We also treat the receive times of messages as external
inputs. Each message receive event is the deterministic result of its send event and of a nondeterministic
network delay event featuring the same security label as the receive event. We refer to start and network
delay events collectively as nondeterministic input events (NIEs).

Protocols do not output NIEs. Instead, an NIE may appear at any point in an execution, and any prior
events in the execution can happen before (_) the NIE. Recall that an execution features a sequence of
events, each of which can be seen as a system state featuring all events up to that point. An execution E is
consistent with a protocol p if every event in the sequence is either an NIE, or the result of p applied to the
previous state at the event’s location. We sometimes say p results in E to mean “E is consistent with p.”

As an example, assume all events in Fig. 6 have the same location L, and no messages are involved.
Start events r0 and b0 are NIEs. Every other event has been scheduled by a protocol. Fig. 8 shows two
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different executions, which may be using different protocols, determining which events to schedule in each
state. We can see that in the top execution of Fig. 8, the protocol maps:

{R,B, . . .}, L, {r0} 7→ r1
{R,B, . . .}, L, {r0, r1} 7→ r2

{R,B, . . .}, L, {r0, r1, r2,b0} 7→ p
{R,B, . . .}, L, {r0, r1, r2,b0,p} 7→ b1

{R,B, . . .}, L, {r0, r1, r2,b0,p,b1} 7→ b2

The protocol in the bottom execution of Fig. 8 maps:

{R,B, . . .}, L, {r0,b0} 7→ r1
{R,B, . . .}, L, {r0,b0, r1} 7→ p

{R,B, . . .}, L, {r0,b0, r1,p} 7→ b1

{R,B, . . .}, L, {r0,b0, r1,p,b1} 7→ b2

{R,B, . . .}, L, {r0,b0, r1,p,b1,b2} 7→ r2

Ultimately, a protocol must determine the ordering of transactions. If the exact set of start events to be
scheduled (as opposed to start events possible) were always known in advance, scheduling would be trivial.
A protocol should not require one transaction to run before another a priori: start events from any subset
of possible transactions may be scheduled at any time. No protocol should result in a system state in
which such a start event cannot be scheduled, or an incomplete transaction can never finish.

3.7 Semantic Security Properties

Consider an observer who can only “see” events at some security level ` or below. If two states S1 and S2

are indistinguishable to the observer, then after a program runs, noninterference requires that the resulting
executions remain indistinguishable to the observer. Secret values, which the observer cannot see, may
differ in S1 and S2, and may result in different states at the end of the executions, but the observer should
not be able to see these differences.

3.7.1 Possibilistic Noninterference

David Sutherland’s hyperproperty Generalized Noninterference2 [42] generalizes Goguen and Meseguer’s
noninterference [22]. His model features “possible execution sequences”, much like our executions, each of
which is a sequence of system states. For a given observer, some information is low observable, meaning
the observer may learn it. Other information is high, meaning it’s too secret for the observer to know. His
model also features some events, called “signals,” representing inputs, which can be either low or high.
Possibilistic Noninterference, then, requires that for any given execution E1, it must be possible to change
the high inputs of E1 to those of any other valid execution E2, and create a valid, possible execution E3

without changing any low events:

∀E1, E2.∃E3.
High inputs(E3) =High inputs(E2)∧
Low events(E3) = Low events(E1)

In a sense, an observer can’t make any observations that change the possible set of high inputs, but might be
able to infer which are probable. This is recognized as a fairly weak form of noninterference in nondeter-
ministic systems. [13]

2McCullough coins the term “Generalized Noninterference” [29], and Clarkson and Schneider define hyperproperties [13].
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In our hospital example, as illustrated in Fig. 4, the system determines which of Patsy’s transactions
will run based upon whether p.hasHiv is true. We can treat this condition to be a high-security event
that happens before all reads of p.hasHiv. If we classify this past high-security event as input, and all
low-security events as low-observable for Mallory, then we must ensure that when Patsy’s code runs, the
set of possible low-security events that result is the same regardless of whether p.hasHiv. Patsy’s possible
transactions in Fig. 4 ensure possibilistic noninterference, while her transactions in Fig. 3 do not, since
whether or not Read address occurs depends on p.hasHiv.

3.7.2 Relaxed Observational Determinism

Semantic conditions for information security are typically based on some variant of noninterference [22, 36].
These variants are often distinguished by their approaches to nondeterminism. However, many of these
semantic security conditions fail under refinement: if some nondeterministic choices are fixed, security is
violated [45]. However, low-security observational determinism [35, 45] is a strong property that is secure
under refinement: intuitively, if an observer with label ` cannot distinguish states S and S′, that observer
must not be able to distinguish any execution E beginning with S from any execution E′ beginning with S′:(

S ≈` S
′)⇒ E ≈` E

′

This property is too strong because it rules out two sources of nondeterminism that we want to allow: first,
the ability of any transaction to start at any time, and second, network delays. Therefore, we relax observa-
tional determinism to permit certain nondeterminism. We only require that executions be indistinguishable
to the observer if their NIEs are indistinguishable to the observer:(

S ≈` S
′ ∧ NIE(E) ≈` NIE

(
E′

))
⇒ E ≈` E

′

We call this relaxed property relaxed observational determinism. It might appear to be equivalent to
observational determinism, but with the NIEs encoded in the start states. This is not the case. If NIEs were
encoded in the start states, protocols would be able to read which transactions will start and when messages
will arrive in the future. Therefore relaxed observational determinism captures something that observational
determinism does not: unknowable but “allowed” nondeterminism at any point in an execution.

By deliberately classifying start events and network delays as input, we allow certain kinds of informa-
tion leaks that observational determinism would not. Specifically, a malicious network could leak informa-
tion by manipulating the order or timing of message delivery. However, such a network could by definition
communicate information to its co-conspirators anyway. Information can also be leaked through the order
or timing of start events. This problem is beyond the scope of this work.

Conditioning the premise of the security condition on the indistinguishability of information that is
allowed to be released is an idea that has been used earlier [37], but not in this way, to our knowledge.

In our hospital example, as illustrated in Fig. 4, the system determines which of Patsy’s transactions
(the one with the dashed events, or the one without the dashed events) will run based on whether p.hasHiv
is true. We can consider p.hasHiv’s value to be a high-security event that happens before all reads of
p.hasHiv. If we classify this past high-security event as input, and all low-security events as low-observable
for Mallory, then we must ensure that when Patsy’s code runs, the low-security projections of resulting ex-
ecutions are always the same, regardless of whether p.hasHiv. Patsy’s possible transactions in Fig. 4 allow
for observational determinism, while her transactions in Fig. 3 do not, since whether or not Read address
occurs depends on p.hasHiv. Whether or not the system actually maintains observational determinism,
however, depends on the protocol scheduling the events.
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Figure 9: Transactions that cannot be securely serialized. Dave’s transaction includes r0, r1, r2, and
r3. Carol’s includes b0, b1, b2, and b3. Cloud providers Alice and Bob must decide how to order their
events. Alice and Bob may not influence each other, and Carol and Dave may not influence each other, as
represented by the wall. For these transactions to be serializable, Alice’s ordering of r2 and b2 must agree
with Bob’s ordering of r3 and b3.

Def. 3 (Protocol Security). A protocol is considered secure if the set of resulting executions satisfies relaxed
observational determinism for any allowed sets of information-flow secure transactions and any possible
NIEs.

4 Impossibility

One of our contributions is to show that even in the absence of timing channels, there is a fundamental
conflict between secure noninterference and serializability. Previous results showing such a conflict, for
example the work of Smith et al. [41] consider only confidentiality and show only that timing channels are
unavoidable.

Theorem 1 (Impossibility). No secure protocol3 can serialize all possible sets of information-flow secure
transactions.4

We assume protocols cannot simply introduce an arbitrarily trusted third party; a protocol must be able
to run using only the set of locations that have events being scheduled.

Proof. (by counterexample) Consider the counterexample shown in Fig. 9. Alice and Bob are both cloud
computing providers who keep strict logs of the order in which various jobs start and stop. Highly trusted
(possibly government) auditors may review these logs, and check for consistency, to ensure cloud providers

3barring unforeseen cryptographic capabilities (§4.1)
4In fact, what we prove is stronger. Our proof holds for even possibilistic security conditions [29], which are weaker than relaxed

observational determinism (see technical report [39]). No protocol whose resulting traces satisfy even this weaker condition can
serialize all sets of information-flow secure transactions.
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are honest and fair. As competitors, Alice and Bob do not want each other to gain any information about
their services, and do not trust each other to affect their own services.

Carol and Dave are presently running jobs on Alice’s cloud. Both Carol and Dave would like to stop
their jobs on Alice’s cloud, and start new ones on Bob’s cloud. Each wants to do this atomically, effectively
maintaining exactly one running job at all times. Carol and Dave consider their jobs to be somewhat confi-
dential; they do not want each other to know about them. Unlike the example from Fig. 1, Dave and Carol’s
transactions do not go through a third party like Rainforest. For the transactions to be serializable, Alice’s
ordering of the old jobs stopping must agree with Bob’s ordering of the new jobs starting.

These transactions feature at least 8 events:
r0: Dave sends a message to Alice
r1: Dave sends a message to Bob
r2: Alice receives a message from Dave, ending a job.
r3: Bob receives a message from Dave, beginning a job.
b0: Carol sends a message to Alice
b1: Carol sends a message to Bob
b2: Alice receives a message from Carol, ending a job.
b3: Bob receives a message from Carol, beginning a job.

No events at Alice’s location should influence events at Bob’s location, and vice-versa. No events at
Carol’s location should influence events at Dave’s location, and vice-versa.

Alice and Bob must each finish with ordered logs including job beginnings and endings. This means they
must assign a happens-before (_) relation to their events above. For these transactions to be serializable,
Alice’s ordering of r2 and b2 must agree with Bob’s ordering of r3 and b3.

Lemma 1. These transactions are information-flow secure.
The two transactions in Fig. 9 are information-flow secure (Def. 2).

Proof. The only happens-before relationships within transactions are for the sending and receipt of mes-
sages, explicitly carrying information readable to the recipient. All four are consistent with permitted infor-
mation flows.

Lemma 2. No protocol can securely serialize these transactions. Specifically, no protocol accepting these
transactions can preserve possibilistic noninterference.

Proof. In any system with an asynchronous network, it is possible to reach a state in which Carol’s message
to Alice has arrived, but not her message to Bob, and Dave’s message to Bob has arrived, but not his message
to Alice. In other words, events r2 and b3 have not yet occurred. Fig. 10 illustrates this situation. In this
state, neither Alice nor Bob can know whether one or both transactions have begun. It is impossible for either
to communicate this information to the other without violating possibilistic noninterference. Specifically,
any protocol that relayed such information from one cloud provider to the other would allow the recipient
to distinguish the order of message delivery to the other cloud provider. That ordering is considered secret
input, and so this would be a security violation. All executions with identical start states, and identical inputs
visible to Alice, but differently ordered network delay events at Bob, which are inputs invisible to Alice,
would become distinguishable to Alice. Even possibilistic noninterference would therefore be violated
(§3.7.1).

Additionally, we have assumed that a protocol must be able to schedule any subset of the allowed
transactions’ start events. Therefore valid executions exist in which, say, only Carol’s transaction runs, so
Alice receives only information about Carol’s transaction, and commits Carol’s transaction first. Therefore
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Figure 10: An intermediate state of an execution featuring the transactions from Fig. 9.

a valid execution must exist in which Alice commits Carol’s transaction first, before receiving any further
input from Dave or Bob, and likewise, Bob commits Dave’s transaction first, without further input from
Carol or Alice. Thus any protocol satisfying possibilistic noninterference can schedule inconsistently: the
transactions cannot be securely serialized.

Thus, with this scenario as a counterexample, no secure protocol can serialize all possible sets of in-
formation-flow secure transactions.

4.1 Cryptography

This essentially information-theoretic argument does not account for the possibility that some protocol could
produce computationally indistinguishable traces that are low-distinguishable with sufficient computational
power (e.g., to break encryption). However, we are unaware of any cryptographic protocols that would
permit Alice and Bob to learn a consistent order in which to schedule events without learning each other’s
confidential information.

5 Analysis

Although secure scheduling is impossible in general, many sets of transactions can be scheduled securely.
We therefore investigate which conditions are sufficient for secure scheduling, and what protocols can func-
tion securely under these conditions.

5.1 Monotonicity

A relatively simple condition suffices to guarantee schedulability, while preserving relaxed observational
determinism:

Def. 4 (Monotonicity). A transaction is monotonic if it is information-flow secure and its events are totally
ordered by happens-before (_).
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Theorem 2 (Monotonicity⇒ Schedulability).
A protocol exists that can serialize any set of monotonic transactions and preserve relaxed observational

determinism.

Proof. Monotonicity requires that each event must be allowed to influence all future events in the transac-
tion. A simple, pessimistic transaction protocol can schedule such transactions securely. In order to define
this protocol, we need a notion of locks within our model.

Locks. A lock consists of an infinite set of events for each allowed transaction. A transaction acquires
a lock by scheduling any event from this set. It releases a lock by scheduling another event from this set.
Thus, in a system state S, a transaction T holds a lock if S contains an odd number of events from the lock’s
set corresponding to T . No correct protocol should result in a state in which multiple transactions hold the
same lock. All pairs of events in a lock conflict, so scheduled events that are part of the same lock must be
totally ordered by happens-before (_). All events in a lock share a location, which is considered to be the
location of the lock itself. Likewise, all events in a lock share a label, which is considered to be the label of
the lock itself.

A critical property for transaction scheduling is deadlock freedom [20, 40], which requires that a protocol
can eventually schedule all events from any transaction whose start event has been scheduled. A system
enters deadlock when it reaches a state after which this is not the case. For example, deadlock happens if
a protocol requires two transactions each to wait until the other completes: both will wait forever. If all
transactions are finite sets of events (i.e., all transactions can terminate), then deadlock freedom guarantees
that a system with a finite set of start events eventually terminates, a liveness property. Deadlock freedom is
essential to distributed or parallel scheduling, but notoriously difficult to get right [40].

We now describe a deadlock-free protocol that can securely serialize any set of monotonic transactions,
and preserve relaxed observational determinism:

• Each event in each transaction has a corresponding lock, except start events.

• Any events that have the same label share a lock, and this lock shares a location with at least one of
the events. Conflicting events are assumed to share a label (§3.4).

• A transaction must hold an event’s lock to schedule that event.

• A transaction acquires locks in sequence, scheduling events as it goes. Since all events are ordered
according to a global security lattice, all transactions that acquire the same locks do so in the same
order. Therefore they do not deadlock.

• If a lock is already held, the transaction waits for it to be released.

• When all events are scheduled, the transaction commits, releasing locks in reverse order. Any mes-
sages sent as part of the transaction would thus receive a reply, indicating only that the message had
been received, and all its repercussions committed. We call these replies commit messages.

• For each location, the protocol rotates between all uncommitted transactions, scheduling any interme-
diate events (such as lock acquisitions) until it either can schedule one event in the transaction or can
make no progress, and then rotates to the next transaction.

Security Intuition. Acquiring locks shared by multiple events on different locations requires a commit
protocol between those locations. However, this does not leak information because all locations involved are

16



explicitly allowed to observe and influence all events involved. Therefore several known commit protocols
will do, including 2PC. Since the only messages sent as part of the protocol are commit messages, and
each recipient knows it will receive a commit message by virtue of sending a message in the protocol, no
information (other than timing) is transferred by the scheduling mechanism itself.

Relaxed observational determinism. This protocol, implemented with monotonic transactions, satis-
fies relaxed observational determinism, our slightly relaxed version of observational determinism (§3.7.2).
We consider an event observable to an observer with label ` if the label of the event flows to `. For any two
executions beginning with equivalent states (for some observer `),

E0[0] ≈` E1[0]

If the executions E0 and E1 have the same `-observable inputs, which is to say transaction start events and
network delay events, then the protocol requires E0 and E1 to be indistinguishable to `. The observer of
label ` can only observe a prefix of each transaction being scheduled in a round-robin fashion, and commit
messages for each arriving sometime thereafter. Arrival time of these commit messages is considered an
input, and so all events visible in E0 and E1 are deterministic results of the events visible in the start states,
and the NIEs. Each distinct state in an execution, as observed at `, will be deterministically predicted by
prior states and inputs. Thus relaxed observational determinism is preserved.

Serializability. Transactions consist of totally ordered series of events. Let e1 be the first event in
T1 conflicting with any event in T2. Let e2 be the event in T2 with which e1 conflicts. Suppose they are
scheduled such that e1_e2. Therefore all events in T2 after and including e2 cannot be scheduled until T1

commits and releases its locks. No event in T2 scheduled before e2 can conflict with an event in T1 after
e1, by monotonicity, or before e1, by the definition of e1. Thus all conflicting events in T2 are scheduled
after all events in T1, so no event in T1 can happen after an event in T2. Therefore, this pessimistic protocol
ensures serializability.

Liveness. This scheduling system cannot result in deadlock, since all transactions acquire locks in
strictly increasing order on the lattice, so any set of transactions that acquire the same locks must do so in
the same order.

Therefore, monotonicity is sufficient to guarantee secure schedulability.

5.2 Relaxed Monotonicity

Monotonicity, while relatively easy to understand, is not the weakest condition we know to be sufficient
for secure schedulability. It can be substantially relaxed. In order to explain our weaker condition, relaxed
monotonicity, we first need to introduce a concept we call visibility:

Def. 5 (Visible-To). An event e in transaction T is visible to a location L if and only if it happens at L, or
if there exists another event e′ ∈ T at L, such that e_e′.

Def. 6 (Relaxed Monotonicity). A transaction T satisfies relaxed monotonicity if it is information-flow
secure and for each location L, all events in T visible to L happen before all events in T not visible to L.

In § 6, we demonstrate that relaxed monotonicity guarantees schedulability. Specifically, we present a
staged commit protocol, and prove that it schedules any set of transactions satisfying relaxed monotonicity,
while preserving relaxed observational determinism (Thm. 4).
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5.3 Requirements for Secure Atomicity

Monotonicity and relaxed monotonicity are sufficient conditions for a set of transactions to be securely
schedulable. Some sets of transactions meet neither condition, but can be securely serialized by some
protocol. For example, any set of transactions that each happen entirely at one location can be securely
serialized if each location schedules each transaction completely before beginning the next. We now describe
a relatively simple condition that is necessary for any set of transactions to be securely scheduled.

Decision Events and Conflicting Events

In order to understand this necessary condition, we first describe decision events and conflicting events.
Borrowing some terminology from Fischer, Lynch, and Paterson [21], for a pair of transactions T1 and

T2, any system state is either bivalent or univalent. A system state is bivalent with respect to T1 and T2 if
there exist two valid executions that both include that state, but end with opposite orderings of T1 and T2. A
system state is univalent with respect to T1 and T2 otherwise: for one ordering of the transactions, no valid
execution ending with that ordering contains the state.

We can define a similar relationship for start events: for any pair of distinct start events s1 and s2, a
system state is bivalent with respect to those events if it features in two valid executions, both of which have
s1 and s2 in scheduled transactions, but those transactions are in opposite order. A system state is univalent
with respect to s1 and s2 otherwise.

All full executions (i.e., those starting with an empty state) that order a pair of transactions begin in a
bivalent state with respect to their start events, before either is scheduled. By our definition of serializability
and transaction ordering, once transactions are ordered, they cannot be un-ordered. Any execution that or-
ders the transactions therefore ends in a univalent state with respect to their start events. Any such execution
consists of a sequence of 0 or more bivalent states followed by a sequence of univalent states. The event
that is scheduled in the first univalent state, in a sense, decides the ordering of the transactions. We call it
the decision event.

We call any event in T1 or T2 that conflicts with an event in the other transaction a conflicting event.

Lemma 3 (Decision Event _ Conflicting Events).
For any univalent state S with T1_T2, there exists a full execution E ending in S featuring a decision event
ed that happens before (_) all conflicting events in T1 and T2 (other than ed itself, if ed is a conflicting
event).

Proof. Assume the contradiction. Then for any full execution E′ ending in S, an equivalent execution exists
featuring a state in which a conflicting event ec is scheduled, but the decision event of E′ is not. Such
an equivalent execution would by definition have a different decision event, since ec’s presence in a state
makes the state univalent. By our assumption, this equivalent execution has conflicting events that neither
are, nor happen after, its decision event. This implies yet another equivalent execution with yet another state
featuring an even earlier conflicting event but not the decision event, and so on. Since all states are finite sets,
and _is a strict partial order, this infinite descending chain is impossible. There must exist an execution E
ending with S with decision event ed that happens before all conflicting events in T1 and T2.

We show that two fundamental system state properties are necessary for secure scheduling:

Def. 7 (First-Precedes-Decision). State S satisfies First-Precedes-Decision if, for any pair of transactions
T1 and T2 in S with T1_T2, there is a full execution E ending in S with a decision event ed that either is in
T1, or happens after an event in T1.
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Def. 8 (Decision-Precedes-Second). A state S satisfies Decision-Precedes-Second if, for any pair of trans-
actions T1 and T2 in S with T1_T2, there is a full execution E′ ending in S with a decision event e′d, such
that no event in T2 happens before e′d.

Therefore, for a protocol to be secure, it must ensure resulting system states have these properties.

Theorem 3 (Necessary Condition). Any secure, deadlock-free protocol p must ensure that all full executions
consistent with p feature only states satisfying both First-Precedes-Decision and Decision-Precedes-Second.

Proof. Given T1_T2, any execution E′ ending in S features a decision event ed. Decision events for the
same pair of transactions in equivalent executions must agree on ordering, by the definition of equivalent
execution. If T1 does not contain E’s decision event, ed, or any event that happens before ed, then there
exists an equivalent execution in which ed is scheduled before any events in T1 or T2. This execution would
imply the existence of a system state in which no event in either transaction is scheduled, but it is impossible
to schedule T2 before T1, regardless of inputs after that state. If, after this state, the start event for T2 were
scheduled, but not the start event for T1, then T2 cannot be scheduled. This contradicts a the deadlock-
freedom requirement: no protocol should result in a system state in which a supported transaction can never
be scheduled.

Therefore some event in T1 either is or happens before ed for some full execution E ending in S.
If T1 and T2 conflict, then e′d either is an event in T1 or happens before an event in T1, by Lemma 3. If

an event e2 ∈ T2 happens before e′d, then either e′d ∈ T1, and

e2_e′d ⇒ T2_T1

which is impossible, by the definition of happens-before, or
∃e1 ∈ T1.e

′
d_e1, and

e2_e′d_e1 ⇒ e2_e1 ⇒ T2_T1

which is also impossible, by the definition of happens-before.
If T1 and T2 do not conflict, then the only way T1_T2 implies that there exists some chain

T1_T3_T4_ . . ._Tn_T2 such that and each transaction in the chain conflicts with the next. Therefore,
by the above proof, an equivalent execution exists in which each transaction in the chain contains the deci-
sion event for ordering itself and the following transaction, and no events in the following transaction are
before that decision event.

Therefore there exists some equivalent execution E′ in which no event in T2 happens before the decision
event e′d deciding the ordering between T1 and T2.

Although Thm. 3 may seem trivial, it represents some important conclusions: No protocol can make any
final ordering decision until at least one transaction involved has begun. Furthermore, it is impossible for the
later transaction to determine the decision. Truly atomic transactions cannot include any kind of two-way
interaction or negotiation for scheduling.

6 The Staged Commit Protocol

We now present the staged commit protocol (SC) and prove that it is secure, given transactions satisfying
relaxed monotonicity.
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SC is a hybrid of traditional serialization protocols, such as 2PC, and the simple pessimistic protocol
described in the proof of Thm. 2. Compared to our simple pessimistic protocol, it allows a broader variety
of transactions to be scheduled (relaxed monotonicity vs. regular monotonicity), which in turn allows more
concurrency. A transaction is divided into stages, each of which can be securely committed using a more
traditional protocol. The stages themselves are executed in a pessimistic sequence.

Each event scheduled is considered to be either precommitted or committed. We express this in our
model by the presence or absence of an “isCommitted” event corresponding to every event in a transaction.
Intuitively, a precommitted event is part of some ongoing transaction, so no conflicting events that happen
after a precommitted event should be scheduled. A committed event, on the other hand, is part of a completed
transaction; conflicting events that happen after a committed event can safely be scheduled. Once an event
is precommitted, it can never be un-scheduled. It can only change to being committed. Once an event is
committed, it can never change back to being precommitted.

• The events of each transaction are divided into stages. Each stage will be scheduled using traditional
2PC, so aborts within a stage will be sent to all locations involved in that stage.

To divide the events into stages, we establish equivalence classes of the events’ labels. Labels within
each class are equivalent in the following sense: when events with equivalent labels are aborted, those
aborts can securely flow to the same set of locations. An event’s abort can always flow to the event’s
own location, so locations involved in a stage can securely ensure the atomicity of the events in that
stage. Since conflicting events have the same security labels, they will be in the same equivalence
class. We call these equivalence classes conflict labels (cl).

• Each stage features events of the same conflict label, and is scheduled with 2PC. One location must
coordinate the 2PC. All potential aborts in the stage must flow to the coordinator, and some events on
the coordinator must be permitted to affect all events in the stage. Relaxed monotonicity implies that
at least one such location exists for each conflict label.

When a stage tries to schedule an event, but finds a precommitted conflicting event, it aborts the entire
stage. Because conflicting events have the same label, these aborts cannot affect events on unpermitted
locations.

When a stage’s 2PC completes, the events in the stage are scheduled, and considered precommitted.

• Each transaction precommits its stages as they occur. To avoid deadlock, we must ensure that when-
ever two transactions feature stages with equal conflict labels, they precommit those stages in the
same order. Therefore, the staged commit protocol assumes an ordering of conflict labels. This can be
any arbitrary ordering, so long as (1) it totally orders the conflict labels appearing in each transaction,
and (2) all transactions agree on the ordering.

• When all stages are precommitted, all events in the transaction can be committed. Commit messages
to this effect are sent between locations, backwards through the stages. Whenever an event in one
stage triggers an event in the next, the locations involved can be sure a commit message will take the
reverse path. The only information conveyed is timing.

Because events in a precommitted stage cannot be un-scheduled or “rolled back”, a participant that
is involved only in an earlier stage is prevented from gleaning any information about later stages. The
participant will only learn, eventually, that it can commit.

Patsy’s transaction in Fig. 4c has at least two stages when the patient has HIV:
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1. Patsy begins the transaction (Patsy start), and reads the address (Read Address). This stage will be
atomically precommitted, and this precommit process will determine the relative ordering of Patsy’s
transaction and Mallory’s, independent of more secret events.

2. Patsy finds that the patient has HIV (Read HIV), and prints the patient’s address (Print address).

Theorem 4 (Security of SC). Any set of transactions satisfying relaxed monotonicity are serialized by SC
securely without deadlock.

Proof.
Security. SC preserves relaxed observational determinism. Intuitively, any information flows that it adds
are already included in the transaction.

SC adds no communication affecting security:

• Communication within each stage is strictly about events that all participants can both observe.

• For each pair of consecutive stages, at least one participant from the first stage can notify a participant
in the second stage securely, when it is time for the second stage to begin. Relaxed monotonicity
ensures the second stage contains an event that happens after an event in the first stage, representing a
line of communication.

• Communication for commits can safely proceed in reverse order of stages. Within each stage, each
participant can securely forward a commit message to all other participants. Between stages, commit
messages can be sent back along the same channels used to notify each stage the previous one had
precommitted. Each participant knows when it precommits exactly which commit messages it will
receive. The commit messages themselves do not leak any information (other than timing) to their
recipients.

Therefore SC adds no unauthorized information flows.
Specifically, for any given participant’s label `, events within a stage visible to ` are scheduled determin-

istically based only on information visible to `. Commit messages (and affiliated events) for visible stages
arrive eventually, at a time determined by network delay events, which we consider input. Other stages’
events are not observable to `.

Therefore, for any two executions beginning with states indistinguishable to `, with NIEs visible to `,
all scheduled events visible to ` would be indistinguishable. Thus relaxed observational determinism is
preserved.

Serializability. Any set of transactions with relaxed monotonicity scheduled by SC will be serializable.

Lemma 4 (Precommitted Snapshot).
Any execution in which an event in a transaction is committed features a system state in which all events in
the transaction are precommitted.

Proof. Stages are totally ordered, and each waits until the final stage commits before (_) any of its events
commit. The final stage precommits before (_) it commits, and so there is a system state in which all events
in the transaction are precommitted.

Let E be an execution where any two conflicting transactions T1 and T2 both have at least one event
that commits. Given Lemma 4, E must feature two states: one in which all events in T1 are precommitted,
and another in which all events of T2 are precommitted. As T1 and T2 conflict, these states cannot be the
identical. (An event is never scheduled while a conflicting event is precommitted.)
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One transaction must be scheduled before (_) the other. Without loss of generality, let it be T1. No
equivalent execution can feature a state in which an event in T2 is scheduled before an event in T1, as this
would require a conflicting event in T2 to be precommitted before its corresponding conflicting event in
T1 is committed. The corresponding conflicting event in T1 must be precommitted before any event in T1

commits, and we require that all events in q2 remain precommitted until after an event in T1 commits.
Therefore, if T1_T2 then it is impossible for T2_T1. Thus SC guarantees a strict partial order of

transactions, and therefore serializability.
Deadlock Freedom.
A deadlock can occur only if there is a cycle of dependencies among transactions, in which transaction

T1 depends on T2 if and only if T2 has precommitted an event conflicting with an unscheduled event in T1.
Conflicting events share labels, and stages are defined by labels. All transactions must therefore order

the stages of conflicting pairs in the same way. One event can only ever depend on an event in its own or in
a prior stage. Stages are precommitted in order, so no dependency cycle featuring events in different stages
is possible.

Each stage is precommitted atomically using 2PC. 2PC preserves deadlock freedom, meaning no cycle
featuring only events in the same stage is possible.

Therefore no cycles, and thus no deadlock, can exist with SC.
SC is secure, deadlock-free, and guarantees serializability when the transactions have relaxed mono-

tonicity.

The Importance of Optimism

SC specifies only a commit protocol. Actual computation (which generates the set of events) for each
transaction can be done in advance, optimistically. If one stage precommits and the next is blocked by
a conflicting transaction, optimistically precomputed events would have to be rolled back. However, no
precommitted event need be rolled back. In fact, it would be insecure to do so. Thus SC allows for partially
optimistic transactions with partial rollback.

Our model requires only that a transaction be a set of events. In many cases, however, it is not possible
to know which transaction will run when a start event is scheduled. For example, a transaction might read a
customer’s banking information from a database and contact the appropriate bank. It would not be possible
to know which bank should have an event in the transaction beforehand. If a system attempted to read the
banking information prior to the transaction, then serializability is lost: the customer might change banks in
between the read and the transaction, and so one might contact the wrong bank.

Optimism solves this problem: events are precomputed, and when an entire stage is completed, that
stage’s 2PC begins. This means that optimism is not just an optimization; it is required for secure scheduling
in cases where the transactions’ events are not known in advance.

7 Implementation

We extended the Fabric language and compiler to check that transactions can be securely scheduled, and we
extended the Fabric runtime system to use SC. Fabric and IFDB [38] are the two open-source systems we
are aware of that support distributed transactions on persistent, labeled data with information flow control.
Of these, we chose Fabric for its static reasoning capabilities. IFDB checks labels entirely dynamically, so
it cannot tell if a transaction is schedulable until after it has begun.
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1 atomic { PC Possible conflictors
2 String{`} p = post.read(); ⊥ {Alice,Bob, Carol}
3 Comments{`′} c; ⊥ -
4 if (p.contains("fizz")) { ⊥ -
5 c.write("buzz"); ` {Alice, Carol}
6 if (p.contains("buzz")) { ⊥ -
7 c.write("fizz"); ` {Alice, Carol}
8 }
9 }

Figure 11: Carol’s program in our Blog example: Carol reads a post with label `, and depending on what
she reads, writes a comment with label `′. Label ` permits Alice, Bob, and Carol to read the post, while `′

keeps the Comments more private and allows only Alice and Carol to view or edit.

7.1 The Fabric Language

The Fabric language is designed for writing distributed programs using atomic transactions that operate on
persistent, Java-like objects [28]. It has types that label each object field with information flow policies
for confidentiality and integrity. The compiler uses these labels to check that Fabric programs enforce a
noninterference property. However, like all modern systems built using 2PC, Fabric does not require that
transactions be securely scheduled according to the policies in the program. Consequently, until now, abort
channels have existed in Fabric.

We leverage these security labels and extend the compiler to additionally check that transactions in
a Fabric program are monotonic (§ 5). This implementation prevents confidentiality breaches via abort
channels. Preventing integrity breaches would require further dynamic checks, which we leave to future
work.

7.2 Checking Monotonicity

Our modification to the Fabric compiler enforces relaxed monotonicity (Def. 6). Our evaluation (§8) shows
that enforcing this condition does not exclude realistic and desirable programs. Our changes to the Fabric
compiler and related files include 4.1k lines of code (out of roughly 59k lines).

7.2.1 Events and Conflict Labels in Fabric

The events in the system model (§3) are represented in our implementation by read and writes on fields of
persistent Fabric objects. The label of the field being read or written corresponds to the event labels in our
model.

SC (§6) divides events into stages based on conflict labels (cl). In our implementation, we define the cl
of an event e to correspond to the set of principals authorized to read or write the field that is being accessed
by e. If e is a write event, this set contains exactly those principals that can perform a conflicting operation
(and thereby receive an abort); if e is a read event, the set is a conservative over-approximation, since only
the writers can conflict.

Fig. 11 presents a program in which Carol schedules two events within a single transaction. First, she
reads a blog post with security label `. Second, she writes a comment (whose content depends on that of the
post) with label `′. Since ` permits Alice, Bob, or Carol to read the post, the cl of the first event includes
all three principals. However, only Alice and Carol can read or write the comment, so when Carol goes to
write it, only Alice or another transaction acting on behalf of Carol could cause conflicts. The cl of the
write therefore includes only Alice and Carol.
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7.2.2 Program Counter Label

The program counter label (pc) [16] labels the program context. For any given point in the code, the
pc represents the join (least upper bound) of the labels of events that determine whether or not execution
reaches that point in the code. These events include those occurring in if-statement and loop conditionals.
For instance, in Fig. 11, whether line 5 runs depends on the value of p, which has label `. Therefore, the fact
that line 5 is executing is as secret as p, and the pc at line 5 is `.

SC requires that when events with the same cl are aborted, those aborts can securely flow to the same
set of locations. When an event causes an abort, the resulting abort messages carry information about the
context in which the event occurs. Therefore, we enforce the requirement by introducing a constraint on the
program context in which events may occur: the pc must flow to the principals in the conflict label.

pc v cl (1)

Eliding the details of how Fabric’s labels are structured, in Fig. 11,⊥ flows to everything, and `, the label
of the blog post, does flow to the conflict label, indicating that both Alice and Carol can cause a conflict.
Therefore, Eqn. (1) holds on lines 2, 5, and 7.

7.2.3 Ordering Stages

Each stage consists of operations with the same cl. To ensure all transactions precommit conflicting stages
in the same order, we adopt a universal stage ordering:

principals(cli) ) principals(cli+1) (2)

The set of principals in each stage must be a strict superset of the principals in the next one. This ensures that
unrestricted information can be read in one stage and sensitive information can be modified in a later stage
in the same transaction. In the hospital example (Fig. 4), Read HIV has a conflict label that only includes
trusted personnel, while Read address has a conflict label that includes more hospital staff. As a result, our
implementation requires that Read address be staged before Read HIV in Patsy’s transaction.

In Fig. 11, our stage ordering means that the read on line 2, with a cl of {Alice,Bob, Carol} belongs
in an earlier stage than the write, which features a cl of only {Alice, Carol}.

7.2.4 Method Annotations

To ensure modular program analysis and compilation, each method is analyzed independently. Fabric is
an object-oriented language with dynamic dispatch, so it is not always possible to know in advance which
method implementation a program will execute. Therefore, the exact conflict labels for events within a
method call are not known at compile time. In order to ensure each atomic program can divide into mono-
tonic stages, we annotate each method with bounds on the conflict labels of operations within the method.
These annotations are the security analogue of argument and return types for methods.

7.3 Implementing SC

We extended the Fabric runtime system to use SC instead of traditional 2PC, modifying 2.4k lines of code
out of a total of 24k lines of code in the original implementation. Specifically, we changed Fabric’s 2PC-
based transaction protocol so that it leaves each stage prepared until all stages are ready, and then commits.
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Since Fabric labels can be dynamic, the compiler statically determines potential stagepoints—points in
the program that may begin a new stage—along with the conflict labels of the stages immediately surround-
ing the potential stagepoint. If the compiler cannot statically determine whether the conflict labels before
and after a stagepoint will be different, it inserts a dynamic equivalence check for the two labels. At run
time, if the two labels are not equivalent, then a stage is ending, and the system precommits all operations
made thus far. To precommit a stage, we run the first (“prepare”) phase of 2PC. If there is an abort, the stage
is re-executed until it eventually precommits.

In Fig. 11, there is a potential stagepoint before lines 4 and 6, where the next operation in each case
will not include Bob as a possible conflictor. The conflict labels surrounding the potential stagepoint are
{Alice,Bob, Carol} (from reading the post on line 2) and {Alice, Carol} (from writing the comment on
either line 4 or 6). If another transaction caused the first stage to abort, then Carol’s code would rerun up to
line 4 or 6 until it could precommit, and then the remainder of the transaction would run.

8 Evaluation

To evaluate our implementation, we built three example Fabric applications, and tested them using our
modified Fabric compiler:

• an implementation of the hospital example from §2;

• a primitive blog application (from which Fig. 11 was taken), in which participants write and comment
on posts with privacy policies; and

• an implementation of the Rainforest example from §2.

8.1 Hospital

We implemented the programs described in our hospital example (Fig. 3). In the implementation, Patsy’s
code additionally appends the addresses of HIV-positive patients to a secure log. In a third program, another
trusted participant reads the secure log.

With our changes, the compiler correctly rejects Patsy’s code. We amended her code to reflect Fig. 4.
Of the 350 lines of code, we had to change a total of 113 to satisfy relaxed monotonicity and compile. Of
these 113 lines, 23 were additional method annotations and the remaining 90 were the result of refactoring
the transaction that retrieves the addresses of HIV-positive patients. SC scheduled the transactions without
leaking information. The patient’s HIV status made Mallory neither more nor less likely to receive aborts.

8.2 Blog

In our primitive blog application, a store holds API objects, each of which features blog posts (represented
as strings) with some security label, and comments with another security label. These labels control who
can view, edit, or add to the posts and comments.

In one of our programs, the blog owner atomically reads a post and updates its text to alternate between
“fizz” and “buzz”. In another program, another user comments on the first post (Fig. 11). To keep this
comment pertinent to the content of the post, reading the post and adding the comment are done atomically.
Since posts and comments have different labels, this transaction has at least two stages: one to read the post,
and another to write the comment.
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Data item Readers Writers
Gloria’s account balance Bank, Gloria Bank
Item price (public) Outel
Inventory Outel Outel

Figure 12: Example policies for the Rainforest application.

We were able to compile and run these programs with our modified system with relatively few changes.
Of the 352 lines of code, we had to change a total of 50, primarily by adding annotations to method signa-
tures (§7.2.4).

8.3 Rainforest

We implemented the Rainforest example from § 2.1. In our code, two nodes within Rainforest act with
Rainforest’s authority. They perform transactions representing the orders of Gloria and Fred from Fig. 1.
Each transaction updates inventory data stored at one location, and banking data stored at another. Fig. 12
gives examples of the policies for price, inventory, and banking data.

While attempting to modify this code to work with SC, we discovered that the staging order chosen
in § 7.2.3 makes it impossible to provide the atomicity of the original application while both meeting its
security requirements and ensuring deadlock freedom.

To illustrate, suppose Gloria is purchasing an item from Outel. To ensure she is charged the correct
price, the event that updates the inventory must share a transaction with the one that debits Gloria’s bank
account. The conflict label for the inventory event corresponds to {Outel}, whereas the conflict label for
the debit event corresponds to {Bank, Gloria}. Since neither is a subset of the other, the compiler cannot
put them in the same transaction.

These difficulties in porting the Rainforest application arise because Fabric is designed to be an open
system, and so an a priori choice of staging order must be chosen. If the application were written as part of
a closed system, deadlock freedom can be achieved by picking a staging order that works for this particular
application (e.g., {Outel} before {Bank, Gloria}), but it might be difficult to extend the system with future
applications.

8.4 Overhead

The staged commit protocol adds two main sources of overhead compared to traditional 2PC. First, each
stage involves a round trip to prepare the data manipulated during the stage, leading to overhead that scales
with the number of stages and with network latency. Second, as described in § 7.3, dynamic labels result
in potential stagepoints, which must be resolved using run-time checks. The number of checks performed
depends on how well the compiler’s static analysis predicts potential stagepoints.

We measured this overhead in our implementation on an Intel Core i7-2600 machine with 16 GiB of
memory, using the transactions in our examples. The post and comment transactions in the blog example
were each run continually for 15 minutes, and Patsy’s transaction in the hospital example was run continually
for 1 hour.

Fig. 13 gives the overall execution times for both the original system and the modified system. For
the modified system, it also shows the number of stages for each transaction and the average time spent in
dynamic checks for resolving potential stagepoints. The comment transaction in our experiments has one
more stage than as described in Fig. 11, because in all transactions, there is an initial stage performed to
obtain the principals involved in the application.
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Example Program SC 2PC
# stages Dyn. checks Total time Total time

Hospital patsy 3 0.45 ms 9.17 ms 6.38 ms

Blog
post 2 0.11 ms 1.03 ms 1.01 ms
comment 3 0.29 ms 1.30 ms 1.01 ms

Figure 13: Performance overhead of SC. Reported times are per-transaction averages, across three 5-minute
runs of the blog application and three 20-minute runs of the hospital application. Relative standard error of
all measurements is less than 2%.

By running the nodes on a single machine and using in-memory data storage, we maximize the fraction
of the transaction run time occupied by dynamic checks. Nevertheless, this fraction remains small. While the
effective low latency of communication between nodes reduces the overhead due to communication round-
trips for staging precommits, we report the number of stages, from which this overhead can be calculated
for arbitrary latency.

9 Related work

Various goals for atomic transactions, such as serializability [32] and ACID [23], have long been proposed
and widely studied, and are still an active research topic [34, 24, 41, 28, 8, 12]. While much of the recent
interest has been focused on performance [18, 27, 43, 3, 46, 44], we focus on security.

Information leaks in commonly used transaction scheduling protocols have been known for at least
two decades [41, 7]. Kang and Keefe [24] explore transaction processing in databases with multiple security
levels. Their work focuses on a simpler setting with a global, trusted transaction manager. They assume each
transaction has a single security level, and can only “read down” and “write up.” Smith et al. [41] show that
strong atomicity, isolation, and consistency guarantees are not possible for all transactions in a generalized
multilevel secure database. They propose weaker guarantees and give three different protocols that meet
various weaker guarantees. Their Low-Ready-Wait 2PL protocol is similar to SC, and provides only what
the authors call ACIS−–correctness. Specifically, “aborted operations at a higher level may prevent all
lower level operations from beginning” [41, p37]. Although our implementation is conservative and would
not allow such a thing, the theory behind SC could allow a later stage with less trustworthy participants to
hold up earlier, precommitted stages indefinitely. Duggan and Wu [19] observe that aborts in high-security
subtransactions can leak information to low-security parent transactions. Their model of a single, centralized
multilevel secure database with strictly ordered security levels is more restrictive than our distributed model
and security lattice. Our abort channels generalize their observation. They arrive at a different solution,
building a theory of secure nested transactions. Atluri, Jajodia, and George [6] describe a number of known
protocols requiring weaker guarantees or a single trusted coordinator. Our work instead focuses on securely
serializing transactions in a fully decentralized setting. Our analysis is also the first in this vein to consider
liveness: SC can guarantee deadlock freedom of transactions with relaxed monotonicity.

In this work, we build on a body of research that uses lattice-based information flow labels and language-
based information flow methods [15, 17, 36]. Relatively little work has studied information flow in trans-
actional systems. Our implementation is built on Fabric [28, 4], a distributed programming system that
controls information flow over persistent objects. The only other information-flow-sensitive database im-
plementation appears to be IFDB [38], which also does not account for abort channels.
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10 Conclusion

There is a fundamental trade-off between strong consistency guarantees and strong security properties in
decentralized systems. We investigate the secure scheduling of transactions, a ubiquitous building block of
modern large-scale applications. Abort channels offer a stark example of an unexplored security flaw: exist-
ing transaction scheduling mechanisms can leak confidential information, or allow unauthorized influences
of trusted data. While some sets of transactions are impossible to serialize securely, we demonstrate the
viability of secure scheduling.

We present relaxed monotonicity, a simple condition under which secure scheduling is always possible.
Our staged commit protocol can securely schedule any set of transactions with relaxed monotonicity, even in
an open system. To demonstrate the practical applicability of this protocol, we adapted the Fabric compiler
to check transactional programs for conditions that allow secure scheduling. These checks are effective:
the compiler identifies an intrinsic security flaw in one program, and accepts other, secure transactions with
minimal adaptations.

This work sheds light on the fundamentals of secure transactions. However, there is more work to be
done to understand the pragmatic implications. We have identified separate necessary and sufficient condi-
tions for secure scheduling, but there remains space between them to explore. Ultimately, abort channels
are just one instance of the general problem of information leakage in distributed systems. Similar channels
may exist in other distributed settings, and we expect it to be fruitful to explore other protocols through the
lens of information flow analysis.

Acknowledgments

The authors would like to thank the anonymous reviewers for their suggestions. This work was supported
by MURI grant FA9550-12-1-0400, by NSF grants 1513797, 1422544, 1601879, by gifts from Infosys and
Google, and by the Department of Defense (DoD) through the National Defense Science & Engineering
Graduate Fellowship (NDSEG) Program.

References

[1] Distributed transactions: .NET framework 4.6. https://msdn.microsoft.com/en-us/library/
ms254973%28v=vs.110%29.aspx. Accessed: 2015-11-13.
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